MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. ASTM A182 Grade F10

7076 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2
34
Fatigue Strength, MPa 170
180
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 530
630
Tensile Strength: Yield (Proof), MPa 460
230

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 460
1370
Specific Heat Capacity, J/kg-K 860
470
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
15
Electrical Conductivity: Equal Weight (Specific), % IACS 100
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
22
Strength to Weight: Bending, points 48
21
Thermal Shock Resistance, points 23
18

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
7.0 to 9.0
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
66.5 to 72.4
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0.5 to 0.8
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0