MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. ASTM A372 Grade L Steel

7076 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
350
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2
14
Fatigue Strength, MPa 170
670
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 310
700
Tensile Strength: Ultimate (UTS), MPa 530
1160
Tensile Strength: Yield (Proof), MPa 460
1040

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 460
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1110
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
2890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
41
Strength to Weight: Bending, points 48
31
Thermal Diffusivity, mm2/s 54
12
Thermal Shock Resistance, points 23
34

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
95.2 to 96.3
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0