MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN 1.3549 Stainless Steel

7076 aluminum belongs to the aluminum alloys classification, while EN 1.3549 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN 1.3549 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220
Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 530
730

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 460
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1110
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 49
27
Strength to Weight: Bending, points 48
24
Thermal Diffusivity, mm2/s 54
5.6
Thermal Shock Resistance, points 23
26

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
77.5 to 82
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.070 to 0.12
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0