MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN 1.4416 Stainless Steel

7076 aluminum belongs to the aluminum alloys classification, while EN 1.4416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN 1.4416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2
34
Fatigue Strength, MPa 170
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 530
500
Tensile Strength: Yield (Proof), MPa 460
210

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 460
1400
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
5.8
Embodied Energy, MJ/kg 150
79
Embodied Water, L/kg 1110
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
17
Strength to Weight: Bending, points 48
17
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
45.2 to 52.4
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0