MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN 1.4662 Stainless Steel

7076 aluminum belongs to the aluminum alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2
28
Fatigue Strength, MPa 170
430 to 450
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 310
520 to 540
Tensile Strength: Ultimate (UTS), MPa 530
810 to 830
Tensile Strength: Yield (Proof), MPa 460
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 460
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
840 to 940
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 49
29 to 30
Strength to Weight: Bending, points 48
25
Thermal Diffusivity, mm2/s 54
3.9
Thermal Shock Resistance, points 23
22

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0.3 to 1.0
0.1 to 0.8
Iron (Fe), % 0 to 0.6
62.6 to 70.2
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0