MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN 1.4749 Stainless Steel

7076 aluminum belongs to the aluminum alloys classification, while EN 1.4749 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN 1.4749 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2
16
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
80
Shear Strength, MPa 310
370
Tensile Strength: Ultimate (UTS), MPa 530
600
Tensile Strength: Yield (Proof), MPa 460
320

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 460
1380
Specific Heat Capacity, J/kg-K 860
490
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 24
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.0
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
80
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 49
22
Strength to Weight: Bending, points 48
21
Thermal Diffusivity, mm2/s 54
4.6
Thermal Shock Resistance, points 23
22

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
68.5 to 73.7
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0