MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN 1.5662 Steel

7076 aluminum belongs to the aluminum alloys classification, while EN 1.5662 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN 1.5662 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2
20
Fatigue Strength, MPa 170
380 to 450
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 310
460 to 470
Tensile Strength: Ultimate (UTS), MPa 530
740 to 750
Tensile Strength: Yield (Proof), MPa 460
550 to 660

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 460
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1110
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
810 to 1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
26
Strength to Weight: Bending, points 48
23
Thermal Shock Resistance, points 23
22

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
88.6 to 91.2
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
8.5 to 10
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0