MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN 1.8965 Steel

7076 aluminum belongs to the aluminum alloys classification, while EN 1.8965 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN 1.8965 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2
16
Fatigue Strength, MPa 170
220
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 310
350
Tensile Strength: Ultimate (UTS), MPa 530
570
Tensile Strength: Yield (Proof), MPa 460
340

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 460
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1110
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
78
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
20
Strength to Weight: Bending, points 48
19
Thermal Diffusivity, mm2/s 54
10
Thermal Shock Resistance, points 23
17

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0 to 0.030
Carbon (C), % 0
0 to 0.19
Chromium (Cr), % 0
0.35 to 0.85
Copper (Cu), % 0.3 to 1.0
0.2 to 0.6
Iron (Fe), % 0 to 0.6
94.6 to 99
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.55
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0 to 0.12
Vanadium (V), % 0
0 to 0.14
Zinc (Zn), % 7.0 to 8.0
0
Zirconium (Zr), % 0
0 to 0.17
Residuals, % 0 to 0.15
0