MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. EN AC-46600 Aluminum

Both 7076 aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
77
Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 6.2
1.1
Fatigue Strength, MPa 170
75
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 530
180
Tensile Strength: Yield (Proof), MPa 460
110

Thermal Properties

Latent Heat of Fusion, J/g 380
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
620
Melting Onset (Solidus), °C 460
560
Specific Heat Capacity, J/kg-K 860
890
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
29
Electrical Conductivity: Equal Weight (Specific), % IACS 100
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
81
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 49
18
Strength to Weight: Bending, points 48
25
Thermal Diffusivity, mm2/s 54
51
Thermal Shock Resistance, points 23
8.1

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
85.6 to 92.4
Copper (Cu), % 0.3 to 1.0
1.5 to 2.5
Iron (Fe), % 0 to 0.6
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 1.2 to 2.0
0 to 0.35
Manganese (Mn), % 0.3 to 0.8
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.4
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 7.0 to 8.0
0 to 1.0
Residuals, % 0
0 to 0.15