MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. Nickel 333

7076 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.2
34
Fatigue Strength, MPa 170
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 530
630
Tensile Strength: Yield (Proof), MPa 460
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 460
1410
Specific Heat Capacity, J/kg-K 860
450
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 49
21
Strength to Weight: Bending, points 48
19
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 23
16

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
9.3 to 24.5
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0