MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. SAE-AISI 1548 Steel

7076 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1548 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is SAE-AISI 1548 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2
11 to 16
Fatigue Strength, MPa 170
270 to 430
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 310
440 to 500
Tensile Strength: Ultimate (UTS), MPa 530
730 to 830
Tensile Strength: Yield (Proof), MPa 460
420 to 690

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 460
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
470 to 1280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
26 to 30
Strength to Weight: Bending, points 48
23 to 25
Thermal Diffusivity, mm2/s 54
14
Thermal Shock Resistance, points 23
23 to 27

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.44 to 0.52
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
98 to 98.5
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
1.1 to 1.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0