MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. SAE-AISI M42 Steel

7076 aluminum belongs to the aluminum alloys classification, while SAE-AISI M42 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is SAE-AISI M42 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 530
810 to 2310

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Melting Completion (Liquidus), °C 630
1540
Melting Onset (Solidus), °C 460
1490
Specific Heat Capacity, J/kg-K 860
450
Thermal Conductivity, W/m-K 140
20
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.0
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1110
140

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
28 to 79
Strength to Weight: Bending, points 48
24 to 48
Thermal Diffusivity, mm2/s 54
5.4
Thermal Shock Resistance, points 23
25 to 71

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
1.1 to 1.2
Chromium (Cr), % 0
3.5 to 4.3
Cobalt (Co), % 0
7.8 to 8.8
Copper (Cu), % 0.3 to 1.0
0 to 0.25
Iron (Fe), % 0 to 0.6
76.3 to 81
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0.15 to 0.4
Molybdenum (Mo), % 0
9.0 to 10
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0.15 to 0.65
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
1.2 to 1.9
Vanadium (V), % 0
1.0 to 1.4
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0