MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. C69700 Brass

7076 aluminum belongs to the aluminum alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 6.2
25
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 27
41
Shear Strength, MPa 310
300
Tensile Strength: Ultimate (UTS), MPa 530
470
Tensile Strength: Yield (Proof), MPa 460
230

Thermal Properties

Latent Heat of Fusion, J/g 380
240
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 460
880
Specific Heat Capacity, J/kg-K 860
400
Thermal Conductivity, W/m-K 140
43
Thermal Expansion, µm/m-K 24
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
99
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 49
16
Strength to Weight: Bending, points 48
16
Thermal Diffusivity, mm2/s 54
13
Thermal Shock Resistance, points 23
16

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Copper (Cu), % 0.3 to 1.0
75 to 80
Iron (Fe), % 0 to 0.6
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.4
Silicon (Si), % 0 to 0.4
2.5 to 3.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
13.9 to 22
Residuals, % 0
0 to 0.5