MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. C71580 Copper-nickel

7076 aluminum belongs to the aluminum alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
75
Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 6.2
40
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
51
Shear Strength, MPa 310
230
Tensile Strength: Ultimate (UTS), MPa 530
330
Tensile Strength: Yield (Proof), MPa 460
110

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 630
1180
Melting Onset (Solidus), °C 460
1120
Specific Heat Capacity, J/kg-K 860
400
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
5.1
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
47
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 49
10
Strength to Weight: Bending, points 48
12
Thermal Diffusivity, mm2/s 54
11
Thermal Shock Resistance, points 23
11

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0 to 0.070
Copper (Cu), % 0.3 to 1.0
65.5 to 71
Iron (Fe), % 0 to 0.6
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.3
Nickel (Ni), % 0
29 to 33
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0 to 0.050
Residuals, % 0
0 to 0.5