MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. N06058 Nickel

7076 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 6.2
45
Fatigue Strength, MPa 170
350
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
86
Shear Strength, MPa 310
600
Tensile Strength: Ultimate (UTS), MPa 530
860
Tensile Strength: Yield (Proof), MPa 460
410

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 630
1540
Melting Onset (Solidus), °C 460
1490
Specific Heat Capacity, J/kg-K 860
420
Thermal Conductivity, W/m-K 140
9.8
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 49
27
Strength to Weight: Bending, points 48
23
Thermal Diffusivity, mm2/s 54
2.6
Thermal Shock Resistance, points 23
23

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0.3 to 1.0
0 to 0.5
Iron (Fe), % 0 to 0.6
0 to 1.5
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0