MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. N10003 Nickel

7076 aluminum belongs to the aluminum alloys classification, while N10003 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.2
42
Fatigue Strength, MPa 170
260
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 27
80
Shear Strength, MPa 310
540
Tensile Strength: Ultimate (UTS), MPa 530
780
Tensile Strength: Yield (Proof), MPa 460
320

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 630
1520
Melting Onset (Solidus), °C 460
1460
Specific Heat Capacity, J/kg-K 860
420
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
22
Strength to Weight: Axial, points 49
24
Strength to Weight: Bending, points 48
21
Thermal Diffusivity, mm2/s 54
3.1
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0.3 to 1.0
0 to 0.35
Iron (Fe), % 0 to 0.6
0 to 5.0
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0