MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. R30155 Cobalt

7076 aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.2
34
Fatigue Strength, MPa 170
310
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
81
Shear Strength, MPa 310
570
Tensile Strength: Ultimate (UTS), MPa 530
850
Tensile Strength: Yield (Proof), MPa 460
390

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 460
1420
Specific Heat Capacity, J/kg-K 860
450
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
9.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 49
28
Strength to Weight: Bending, points 48
24
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
24.3 to 36.2
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0