MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. S35315 Stainless Steel

7076 aluminum belongs to the aluminum alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2
46
Fatigue Strength, MPa 170
280
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 310
520
Tensile Strength: Ultimate (UTS), MPa 530
740
Tensile Strength: Yield (Proof), MPa 460
300

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1370
Melting Onset (Solidus), °C 460
1330
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1110
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 49
26
Strength to Weight: Bending, points 48
23
Thermal Diffusivity, mm2/s 54
3.1
Thermal Shock Resistance, points 23
17

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.3 to 1.0
0
Iron (Fe), % 0 to 0.6
33.6 to 40.6
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0