MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. 4032 Aluminum

Both 7108 aluminum and 4032 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 11
6.7
Fatigue Strength, MPa 120
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 210
260
Tensile Strength: Ultimate (UTS), MPa 350
390
Tensile Strength: Yield (Proof), MPa 290
320

Thermal Properties

Latent Heat of Fusion, J/g 380
570
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 630
570
Melting Onset (Solidus), °C 530
530
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
34
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
25
Resilience: Unit (Modulus of Resilience), kJ/m3 620
700
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 34
41
Strength to Weight: Bending, points 38
45
Thermal Diffusivity, mm2/s 59
59
Thermal Shock Resistance, points 16
20

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
81.1 to 87.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0.5 to 1.3
Iron (Fe), % 0 to 0.1
0 to 1.0
Magnesium (Mg), % 0.7 to 1.4
0.8 to 1.3
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0.5 to 1.3
Silicon (Si), % 0 to 0.1
11 to 13.5
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0 to 0.25
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.15