MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. AISI 204 Stainless Steel

7108 aluminum belongs to the aluminum alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11
23 to 39
Fatigue Strength, MPa 120
320 to 720
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 210
500 to 700
Tensile Strength: Ultimate (UTS), MPa 350
730 to 1100
Tensile Strength: Yield (Proof), MPa 290
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 210
850
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.4
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 620
360 to 2940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 34
27 to 40
Strength to Weight: Bending, points 38
24 to 31
Thermal Diffusivity, mm2/s 59
4.1
Thermal Shock Resistance, points 16
16 to 24

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.1
69.6 to 76.4
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0 to 0.15
0