MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. AISI 405 Stainless Steel

7108 aluminum belongs to the aluminum alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11
22
Fatigue Strength, MPa 120
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210
300
Tensile Strength: Ultimate (UTS), MPa 350
470
Tensile Strength: Yield (Proof), MPa 290
200

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 210
820
Melting Completion (Liquidus), °C 630
1530
Melting Onset (Solidus), °C 530
1480
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
84
Resilience: Unit (Modulus of Resilience), kJ/m3 620
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 34
17
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 59
8.1
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0.1 to 0.3
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
11.5 to 14.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.1
82.5 to 88.4
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0 to 0.15
0