MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. AWS ER80S-B6

7108 aluminum belongs to the aluminum alloys classification, while AWS ER80S-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 350
620
Tensile Strength: Yield (Proof), MPa 290
540

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.7
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1150
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
110
Resilience: Unit (Modulus of Resilience), kJ/m3 620
750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 34
22
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 0 to 0.050
0 to 0.35
Iron (Fe), % 0 to 0.1
90.6 to 94.7
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0.4 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.5