MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. EN 1.4762 Stainless Steel

7108 aluminum belongs to the aluminum alloys classification, while EN 1.4762 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is EN 1.4762 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11
13
Fatigue Strength, MPa 120
180
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 210
370
Tensile Strength: Ultimate (UTS), MPa 350
620
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
67
Resilience: Unit (Modulus of Resilience), kJ/m3 620
250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 34
23
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 59
4.6
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
1.2 to 1.7
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.1
69.7 to 75.1
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0 to 0.15
0