MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. EN AC-48000 Aluminum

Both 7108 aluminum and EN AC-48000 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 11
1.0
Fatigue Strength, MPa 120
85 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 350
220 to 310
Tensile Strength: Yield (Proof), MPa 290
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 380
570
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 630
600
Melting Onset (Solidus), °C 530
560
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 620
300 to 510
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 34
23 to 33
Strength to Weight: Bending, points 38
31 to 39
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 16
10 to 15

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
80.4 to 87.2
Copper (Cu), % 0 to 0.050
0.8 to 1.5
Iron (Fe), % 0 to 0.1
0 to 0.7
Magnesium (Mg), % 0.7 to 1.4
0.8 to 1.5
Manganese (Mn), % 0 to 0.050
0 to 0.35
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0 to 0.1
10.5 to 13.5
Titanium (Ti), % 0 to 0.050
0 to 0.25
Zinc (Zn), % 4.5 to 5.5
0 to 0.35
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.15