MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. Grade M30C Nickel

7108 aluminum belongs to the aluminum alloys classification, while grade M30C nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
160
Elongation at Break, % 11
29
Fatigue Strength, MPa 120
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 350
510
Tensile Strength: Yield (Proof), MPa 290
250

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 210
900
Melting Completion (Liquidus), °C 630
1290
Melting Onset (Solidus), °C 530
1240
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 150
22
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.3
9.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
200
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 47
21
Strength to Weight: Axial, points 34
16
Strength to Weight: Bending, points 38
16
Thermal Diffusivity, mm2/s 59
5.7
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
26 to 33
Iron (Fe), % 0 to 0.1
0 to 3.5
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0 to 0.15
0