MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. C12200 Copper

7108 aluminum belongs to the aluminum alloys classification, while C12200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is C12200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 11
3.2 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 210
150 to 240
Tensile Strength: Ultimate (UTS), MPa 350
220 to 410
Tensile Strength: Yield (Proof), MPa 290
69 to 400

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 630
1080
Melting Onset (Solidus), °C 530
1030
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
340
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
85
Electrical Conductivity: Equal Weight (Specific), % IACS 120
85

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.9
9.0
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
11 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 620
21 to 690
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 34
6.9 to 13
Strength to Weight: Bending, points 38
9.1 to 14
Thermal Diffusivity, mm2/s 59
98
Thermal Shock Resistance, points 16
7.9 to 15

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0
Copper (Cu), % 0 to 0.050
99.9 to 99.985
Iron (Fe), % 0 to 0.1
0
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0
Phosphorus (P), % 0
0.015 to 0.040
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0 to 0.15
0