MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. C17200 Copper

7108 aluminum belongs to the aluminum alloys classification, while C17200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is C17200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 11
1.1 to 37
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Shear Strength, MPa 210
330 to 780
Tensile Strength: Ultimate (UTS), MPa 350
480 to 1380
Tensile Strength: Yield (Proof), MPa 290
160 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 210
280
Melting Completion (Liquidus), °C 630
980
Melting Onset (Solidus), °C 530
870
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
22
Electrical Conductivity: Equal Weight (Specific), % IACS 120
23

Otherwise Unclassified Properties

Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
4.2 to 500
Resilience: Unit (Modulus of Resilience), kJ/m3 620
110 to 5720
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 34
15 to 44
Strength to Weight: Bending, points 38
16 to 31
Thermal Diffusivity, mm2/s 59
31
Thermal Shock Resistance, points 16
16 to 46

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Copper (Cu), % 0 to 0.050
96.1 to 98
Iron (Fe), % 0 to 0.1
0 to 0.4
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0.2 to 0.6
Silicon (Si), % 0 to 0.1
0 to 0.2
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.5