MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. C44300 Brass

7108 aluminum belongs to the aluminum alloys classification, while C44300 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is C44300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 350
350
Tensile Strength: Yield (Proof), MPa 290
120

Thermal Properties

Latent Heat of Fusion, J/g 380
180
Maximum Temperature: Mechanical, °C 210
140
Melting Completion (Liquidus), °C 630
940
Melting Onset (Solidus), °C 530
900
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
25
Electrical Conductivity: Equal Weight (Specific), % IACS 120
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1150
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 620
65
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 34
12
Strength to Weight: Bending, points 38
13
Thermal Diffusivity, mm2/s 59
35
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0
Arsenic (As), % 0
0.020 to 0.060
Copper (Cu), % 0 to 0.050
70 to 73
Iron (Fe), % 0 to 0.1
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
25.2 to 29.1
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.4