MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. C49300 Brass

7108 aluminum belongs to the aluminum alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 11
4.5 to 20
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 210
270 to 290
Tensile Strength: Ultimate (UTS), MPa 350
430 to 520
Tensile Strength: Yield (Proof), MPa 290
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 210
120
Melting Completion (Liquidus), °C 630
880
Melting Onset (Solidus), °C 530
840
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 150
88
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
15
Electrical Conductivity: Equal Weight (Specific), % IACS 120
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 620
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 34
15 to 18
Strength to Weight: Bending, points 38
16 to 18
Thermal Diffusivity, mm2/s 59
29
Thermal Shock Resistance, points 16
14 to 18

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.050
58 to 62
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.1
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
30.6 to 40.5
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.5