MakeItFrom.com
Menu (ESC)

7108 Aluminum vs. C90700 Bronze

7108 aluminum belongs to the aluminum alloys classification, while C90700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108 aluminum and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 11
12
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 350
330
Tensile Strength: Yield (Proof), MPa 290
180

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
1000
Melting Onset (Solidus), °C 530
830
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 150
71
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
10
Electrical Conductivity: Equal Weight (Specific), % IACS 120
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
34
Resilience: Unit (Modulus of Resilience), kJ/m3 620
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 34
10
Strength to Weight: Bending, points 38
12
Thermal Diffusivity, mm2/s 59
22
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 92.4 to 94.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
88 to 90
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0.7 to 1.4
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 4.5 to 5.5
0 to 0.5
Zirconium (Zr), % 0.12 to 0.25
0
Residuals, % 0
0 to 0.6