MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. 5457 Aluminum

Both 7108A aluminum and 5457 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 11 to 13
6.0 to 22
Fatigue Strength, MPa 120 to 130
55 to 98
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 210
85 to 130
Tensile Strength: Ultimate (UTS), MPa 350
130 to 210
Tensile Strength: Yield (Proof), MPa 290 to 300
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 630
660
Melting Onset (Solidus), °C 520
630
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
180
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
46
Electrical Conductivity: Equal Weight (Specific), % IACS 110
150

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
18 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 33 to 34
13 to 21
Strength to Weight: Bending, points 38
21 to 28
Thermal Diffusivity, mm2/s 59
72
Thermal Shock Resistance, points 15 to 16
5.7 to 9.0

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
97.8 to 99.05
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
0 to 0.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.1
Magnesium (Mg), % 0.7 to 1.5
0.8 to 1.2
Manganese (Mn), % 0 to 0.050
0.15 to 0.45
Silicon (Si), % 0 to 0.2
0 to 0.080
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 4.8 to 5.8
0 to 0.050
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.1