MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. ACI-ASTM CB7Cu-2 Steel

7108A aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
5.7 to 11
Fatigue Strength, MPa 120 to 130
420 to 590
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 350
960 to 1350
Tensile Strength: Yield (Proof), MPa 290 to 300
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
1510 to 3600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 34
34 to 48
Strength to Weight: Bending, points 38
28 to 35
Thermal Diffusivity, mm2/s 59
4.6
Thermal Shock Resistance, points 15 to 16
32 to 45

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.040
14 to 15.5
Copper (Cu), % 0 to 0.050
2.5 to 3.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
73.6 to 79
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 0.7
Nickel (Ni), % 0
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0