MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. AWS E90C-B3

7108A aluminum belongs to the aluminum alloys classification, while AWS E90C-B3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is AWS E90C-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 350
710
Tensile Strength: Yield (Proof), MPa 290 to 300
600

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1150
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
130
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
970
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
25
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 15 to 16
21

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0 to 0.040
2.0 to 2.5
Copper (Cu), % 0 to 0.050
0 to 0.35
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
93.4 to 96.4
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.5