MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. AWS ERNiCrFe-5

7108A aluminum belongs to the aluminum alloys classification, while AWS ERNiCrFe-5 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is AWS ERNiCrFe-5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
34
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 350
630

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 520
1340
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
250

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 33 to 34
20
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 59
3.6
Thermal Shock Resistance, points 15 to 16
19

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.040
14 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 0 to 0.050
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
6.0 to 10
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
70 to 78.5
Niobium (Nb), % 0
1.5 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.5