MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 1.0434 Steel

7108A aluminum belongs to the aluminum alloys classification, while EN 1.0434 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 1.0434 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
12 to 28
Fatigue Strength, MPa 120 to 130
190 to 300
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 210
280 to 330
Tensile Strength: Ultimate (UTS), MPa 350
390 to 540
Tensile Strength: Yield (Proof), MPa 290 to 300
250 to 450

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
39 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
170 to 540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
14 to 19
Strength to Weight: Bending, points 38
15 to 19
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 15 to 16
12 to 17

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0.020 to 0.060
Carbon (C), % 0
0.15 to 0.19
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
98.8 to 99.18
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0.65 to 0.85
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0