MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 1.4568 Stainless Steel

7108A aluminum belongs to the aluminum alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 13
2.3 to 21
Fatigue Strength, MPa 120 to 130
220 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210
520 to 930
Tensile Strength: Ultimate (UTS), MPa 350
830 to 1620
Tensile Strength: Yield (Proof), MPa 290 to 300
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 210
890
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
290 to 5710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 34
30 to 58
Strength to Weight: Bending, points 38
25 to 40
Thermal Diffusivity, mm2/s 59
4.3
Thermal Shock Resistance, points 15 to 16
23 to 46

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0.7 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.040
16 to 18
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
70.9 to 76.8
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0