MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 1.4658 Stainless Steel

7108A aluminum belongs to the aluminum alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11 to 13
28
Fatigue Strength, MPa 120 to 130
530
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 210
580
Tensile Strength: Ultimate (UTS), MPa 350
900
Tensile Strength: Yield (Proof), MPa 290 to 300
730

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.5
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
240
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
1280
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 34
32
Strength to Weight: Bending, points 38
26
Thermal Diffusivity, mm2/s 59
4.3
Thermal Shock Resistance, points 15 to 16
24

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.040
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.050
0 to 1.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
50.9 to 63.7
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0