MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 1.4823 Stainless Steel

7108A aluminum belongs to the aluminum alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 13
3.4
Fatigue Strength, MPa 120 to 130
130
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 350
620
Tensile Strength: Yield (Proof), MPa 290 to 300
290

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 520
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
17
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 33 to 34
23
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 59
4.5
Thermal Shock Resistance, points 15 to 16
17

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.040
25 to 28
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
60.9 to 70.7
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0