MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 1.4958 Stainless Steel

7108A aluminum belongs to the aluminum alloys classification, while EN 1.4958 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 13
40
Fatigue Strength, MPa 120 to 130
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 210
430
Tensile Strength: Ultimate (UTS), MPa 350
630
Tensile Strength: Yield (Proof), MPa 290 to 300
190

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 210
1090
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 520
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.3
Embodied Energy, MJ/kg 150
75
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
190
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
95
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
22
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 15 to 16
15

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0.2 to 0.5
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.040
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
41.1 to 50.6
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.030
0.2 to 0.5
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0