MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 1.8901 Steel

7108A aluminum belongs to the aluminum alloys classification, while EN 1.8901 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 1.8901 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
19
Fatigue Strength, MPa 120 to 130
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 210
390
Tensile Strength: Ultimate (UTS), MPa 350
630
Tensile Strength: Yield (Proof), MPa 290 to 300
490

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
110
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
22
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 59
12
Thermal Shock Resistance, points 15 to 16
18

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0 to 0.015
Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0 to 0.040
0 to 0.35
Copper (Cu), % 0 to 0.050
0 to 0.6
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
95 to 99.05
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.65
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0 to 0.060
Vanadium (V), % 0
0 to 0.22
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0