MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN 2.4608 Nickel

7108A aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11 to 13
34
Fatigue Strength, MPa 120 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 210
410
Tensile Strength: Ultimate (UTS), MPa 350
620
Tensile Strength: Yield (Proof), MPa 290 to 300
270

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
170
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 33 to 34
20
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 15 to 16
16

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.040
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
11.4 to 23.8
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0