MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN AC-21200 Aluminum

Both 7108A aluminum and EN AC-21200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 11 to 13
3.9 to 6.2
Fatigue Strength, MPa 120 to 130
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 350
410 to 440
Tensile Strength: Yield (Proof), MPa 290 to 300
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
660
Melting Onset (Solidus), °C 520
550
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
500 to 930
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
46
Strength to Weight: Axial, points 33 to 34
38 to 40
Strength to Weight: Bending, points 38
41 to 43
Thermal Diffusivity, mm2/s 59
49
Thermal Shock Resistance, points 15 to 16
18 to 19

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
93.3 to 95.7
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
4.0 to 5.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.7 to 1.5
0.15 to 0.5
Manganese (Mn), % 0 to 0.050
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.1
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0 to 0.1
Zinc (Zn), % 4.8 to 5.8
0 to 0.1
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.1