MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN AC-45100 Aluminum

Both 7108A aluminum and EN AC-45100 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 11 to 13
1.0 to 2.8
Fatigue Strength, MPa 120 to 130
82 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 350
300 to 360
Tensile Strength: Yield (Proof), MPa 290 to 300
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 520
550
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
95

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
290 to 710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
49
Strength to Weight: Axial, points 33 to 34
30 to 35
Strength to Weight: Bending, points 38
35 to 39
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 15 to 16
14 to 16

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
88 to 92.8
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
2.6 to 3.6
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.7 to 1.5
0.15 to 0.45
Manganese (Mn), % 0 to 0.050
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.2
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.030
0 to 0.25
Zinc (Zn), % 4.8 to 5.8
0 to 0.2
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.15

Comparable Variants