MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN AC-47100 Aluminum

Both 7108A aluminum and EN AC-47100 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 11 to 13
1.1
Fatigue Strength, MPa 120 to 130
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 350
270
Tensile Strength: Yield (Proof), MPa 290 to 300
160

Thermal Properties

Latent Heat of Fusion, J/g 380
570
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
590
Melting Onset (Solidus), °C 520
560
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
170
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 33 to 34
28
Strength to Weight: Bending, points 38
35
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 15 to 16
12

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
81.4 to 88.8
Chromium (Cr), % 0 to 0.040
0 to 0.1
Copper (Cu), % 0 to 0.050
0.7 to 1.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.7 to 1.5
0 to 0.35
Manganese (Mn), % 0 to 0.050
0 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.2
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.030
0 to 0.2
Zinc (Zn), % 4.8 to 5.8
0 to 0.55
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.25