MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. EN AC-51500 Aluminum

Both 7108A aluminum and EN AC-51500 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 11 to 13
5.6
Fatigue Strength, MPa 120 to 130
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 350
280
Tensile Strength: Yield (Proof), MPa 290 to 300
160

Thermal Properties

Latent Heat of Fusion, J/g 380
430
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 520
590
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
13
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
52
Strength to Weight: Axial, points 33 to 34
29
Strength to Weight: Bending, points 38
36
Thermal Diffusivity, mm2/s 59
49
Thermal Shock Resistance, points 15 to 16
13

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
89.8 to 93.1
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
0 to 0.050
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.25
Magnesium (Mg), % 0.7 to 1.5
4.7 to 6.0
Manganese (Mn), % 0 to 0.050
0.4 to 0.8
Silicon (Si), % 0 to 0.2
1.8 to 2.6
Titanium (Ti), % 0 to 0.030
0 to 0.25
Zinc (Zn), % 4.8 to 5.8
0 to 0.070
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.15