MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. CC382H Copper-nickel

7108A aluminum belongs to the aluminum alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
140
Elongation at Break, % 11 to 13
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
53
Tensile Strength: Ultimate (UTS), MPa 350
490
Tensile Strength: Yield (Proof), MPa 290 to 300
290

Thermal Properties

Latent Heat of Fusion, J/g 380
240
Maximum Temperature: Mechanical, °C 210
260
Melting Completion (Liquidus), °C 630
1180
Melting Onset (Solidus), °C 520
1120
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.3
5.2
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
85
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
290
Stiffness to Weight: Axial, points 13
8.8
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 33 to 34
15
Strength to Weight: Bending, points 38
16
Thermal Diffusivity, mm2/s 59
8.2
Thermal Shock Resistance, points 15 to 16
16

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.040
1.5 to 2.0
Copper (Cu), % 0 to 0.050
62.8 to 68.4
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0.7 to 1.5
0 to 0.010
Manganese (Mn), % 0 to 0.050
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.2
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.030
0 to 0.25
Zinc (Zn), % 4.8 to 5.8
0 to 0.2
Zirconium (Zr), % 0.15 to 0.25
0 to 0.15
Residuals, % 0 to 0.15
0