MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. SAE-AISI 1064 Steel

7108A aluminum belongs to the aluminum alloys classification, while SAE-AISI 1064 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is SAE-AISI 1064 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
12 to 13
Fatigue Strength, MPa 120 to 130
300
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 210
430 to 440
Tensile Strength: Ultimate (UTS), MPa 350
720 to 730
Tensile Strength: Yield (Proof), MPa 290 to 300
470 to 480

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
79 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
600 to 630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
25 to 26
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 15 to 16
25

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0.6 to 0.7
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
98.4 to 98.9
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0