MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. C63020 Bronze

7108A aluminum belongs to the aluminum alloys classification, while C63020 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is C63020 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 11 to 13
6.8
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
44
Shear Strength, MPa 210
600
Tensile Strength: Ultimate (UTS), MPa 350
1020
Tensile Strength: Yield (Proof), MPa 290 to 300
740

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 210
230
Melting Completion (Liquidus), °C 630
1070
Melting Onset (Solidus), °C 520
1020
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
63
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
2320
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 33 to 34
34
Strength to Weight: Bending, points 38
27
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 15 to 16
35

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
10 to 11
Chromium (Cr), % 0 to 0.040
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
74.7 to 81.8
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0 to 0.3
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.5