MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. C94700 Bronze

7108A aluminum belongs to the aluminum alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 11 to 13
7.9 to 32
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 350
350 to 590
Tensile Strength: Yield (Proof), MPa 290 to 300
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 380
200
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 630
1030
Melting Onset (Solidus), °C 520
900
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 150
54
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
12
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 33 to 34
11 to 19
Strength to Weight: Bending, points 38
13 to 18
Thermal Diffusivity, mm2/s 59
16
Thermal Shock Resistance, points 15 to 16
12 to 21

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
85 to 90
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
1.0 to 2.5
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0
0 to 1.3