MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. N08120 Nickel

7108A aluminum belongs to the aluminum alloys classification, while N08120 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 13
34
Fatigue Strength, MPa 120 to 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 210
470
Tensile Strength: Ultimate (UTS), MPa 350
700
Tensile Strength: Yield (Proof), MPa 290 to 300
310

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 520
1370
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.3
7.2
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1150
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
190
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
24
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 59
3.0
Thermal Shock Resistance, points 15 to 16
17

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.040
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.050
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
21 to 41.4
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0